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Abstract: As the drone market continues to expand, the need for accurately determining a drone’s position and orientation
using a camera in GPS-denied environments becomes increasingly critical. This paper aims to achieve precise position
and attitude data by incorporating SLAM to provide visual measurements for EKF, thereby ensuring the stability of drone
operations. An experiment was conducted to execute commands from the ground control PC using the map created as a
result of SLAM. The primary tools used for this purpose included the Pixhawk Orange, Jetson Nano, and the ZED-Mini
camera. The research showcases the effectiveness of these tools and methods in enhancing indoor drone functionality.
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1. INTRODUCTION

In the rapidly growing drone market, which has seen
an average annual growth rate of 29% over the past
decade, there is a notable shift in interest towards drones
equipped with autonomous flight capabilities for mission
execution, rather than basic, low-priced drones primarily
used for simple photography and videography.

The evolution of drone technology is driven by mar-
ket demands and advancements in positioning sensors,
control theory, and related fields. Drones are now applied
across a diverse range of industries, from aerial photog-
raphy and agricultural pesticide control to long-distance
communication and versatile military applications.

In these diverse applications, autonomous flight is a
fundamental requirement. Achieving this autonomy ne-
cessitates seamless exchange of location information be-
tween ground control centers and drones [1]. In outdoor
environments, drones efficiently utilize GPS and IMU
data from ground control centers to establish reliable
location information exchange and tracking. However,
challenges arise in GPS-denied environments like indoor
spaces and areas with significant obstructions. In such
settings, unstable location information transmission and
reception can render autonomous flight unattainable. Fur-
thermore, many drone navigation technologies primarily
rely on precise outdoor sensors like GPS, limiting their
effectiveness indoors.

To address the challenge of stable flight in GPS-
denied environments, the drone industry has increasingly
adopted Vision Positioning System (VPS) technology.
This approach combines vision sensors, typically cam-
eras, with existing sensors to enhance navigation capa-
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bilities [2]. By leveraging common feature points cap-
tured by onboard cameras, along with drone IMU data
and movement measurements, drones can estimate their
position accurately, thereby compensating for the limita-
tions of traditional positioning sensors [3].

However, it’s important to note that research into in-
door positioning technologies using vision sensors, such
as 3D mapping and VPS, has primarily been conducted
for automotive applications, with relatively limited explo-
ration in the context of indoor drones.

In this paper, we introduce a drone system that lever-
ages the fusion of vision information and IMU data to
achieve precise positioning within indoor environments.
This work represents Part | of a series, and its structure
is as follows: Section 2 introduces a flight control sys-
tem with a specific focus on the Extended Kalman fil-
ter (EKF). Section 3 delves into Simultaneous Localiza-
tion and Mapping (SLAM) techniques, with an emphasis
on loop closing. The experimental setup and analysis are
presented in Section 4, and Section 5 offers a comprehen-
sive conclusion.

Part 2 [4] of this series will build upon the concepts
explored in Part 1 and will focus on the development of
a human-tracking drone system. It will incorporate addi-
tional technologies, including YOLO-v3 (You Only Look
Once) object detection, and our proprietary monocular
depth estimation technique, to further enhance drone ca-
pabilities and performance.

2. FLIGHT CONTROL SYSTEM

In this section, The navigation filter was designed for
indoor drone operation. Specifically, the navigation filter
employs the Extended Kalman Filter (EKF), a widely uti-

?nﬂ%giz/gvggr%%1n99u@gg émence and Technology.l)gvgn%aded on March 23,2025 at 09:42:15 UTC from IEEE Xplore. Restrictions apply.



NED

Greenwich axes 0

meridian

""""" Local

— Meridian Xp Yo
lane Y

p %

Body frame
Earth \ Han T, — —; \ Ogxr

\. Equatorial
plane Xexe Ve

Zgke
EKF origin

Fig. 1.: ECEF Coordinate System with Origin O, and
Axis X, Ye, Z., NED frame with origin O,,¢q4 and axis
N, E, D, body frame with origin Oy, center of mass of
drone and axis Xy, Y3, Zp, EKF-Origin frame with origin
Ogkr and axis Xgir, YExF, ZEKF, Orientation fol-
lows right-handed rule

lized method in drone navigation. The output of SLAM
is used as a measurement input for the EKF to provide
compensation. Further details about SLAM will be cov-
ered in the subsequent chapter. The EKF utilized here is
based on popular open-source drone platforms, namely
Ardupilot and PX4, and detailed information about the
mechanism can be found in [5]. While the equations and
applications for the drone are commonly understood, the
task of tuning various design parameters is typically left
to engineers, which can significantly impact system per-
formance.

2.1 Reference Frame

A reference frame is imperative for drone control. An
inertial frame where Newton’s Law is conserved is used
to describe the dynamics of drones. While various frames
exist for describing Earth-relative motion, the Earth-
Centered Earth-Fixed Frame (ECEF), which disregards
Earth’s rotation, is employed due to the drone’s limited
operational time and distance. Generally, the navigation
system is formulated and computed in the NED frame.
Meanwhile, the body frame is affixed to the drone’s struc-
ture, originating from its center of mass. All sensor mea-
surements affixed to the body are transformed into this
body frame before fusion. Notably, Ardupilot’s naviga-
tion system introduces an additional frame called EKF-
origin, enhancing users’ intuitive grasp of the drone’s po-
sition [6]. The mentioned frames are illustrated in Fig. 1.

2.2 Extended Kalman Filter

For the purpose of localizing the drone’s position
and attitude, we employ an Extended Kalman Filter
(EKF). This filter effectively combines data from the
IMU, downward-facing rangefinder, and visual odome-
try. Given the extensive utilization of EKF in localiz-
ing autonomous vehicles, its equations and implementa-
tion have become well-established. However, the task of
defining design parameters, such as the process noise co-
variance matrix Q and the measurement noise covariance
matrix R, remains in the user’s hand. This demands prior
expert knowledge in signal processing and a comprehen-
sive grasp of the underlying physical system.
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Fig. 2.: Block Diagram of the EKF, subscript k means
discrete time k. Zg and Py are the initial estimated values
of the state vector covariance matrix, &, and Z,_1 are
updated and predicted state estimate, respectively, Py
and Py;—; are updated and predicted covariance esti-
mate, respectively, K} is Kalman gain, Fj, and Hj are
Jacobian of f and h respectively.

2.2.1 EKF algorithm
The System equation and measurement equation for
EKF is shown as below.

Epp1 = f(@p, ur) + wi
Yk = h(xg) + vi

where,z = [¢ vngp Pnep Abhias  Avelpias) g
is the state vector, ¢ is quaternion rotation from the body
frame to the NED frame. Pygp and Vygp denote the
drone’s position and velocity in the NED frame respec-
tively.

The system equation f(xk,u;) and measurement
equation h(xy) are described in [7], alongside the treat-
ment of IMU data. Here, Afy;qs and Awvely;,s represent
changes in the drone’s angle and velocity over the sam-
pling period. The process noise, denoted as w, possesses
a zero mean, variance of Q, and exhibits white noise char-
acteristics. Similarly, the measurement noise, denoted as
v, is represented as white noise with a zero mean and vari-
ance of R. A visual representation of the EKF algorithm
is illustrated in Fig. 2 in the form of a block diagram.

2.2.2 design parameters

The design parameters of EKF are listed in Table. 1
In Table 1, M_NSE and P_NSE represent measurement
noise and process noise, respectively. VISO stands for vi-
sual odometry.

2.3 Control System

For the drone control system, the controller of Ardupi-
lot is used with a fine-tuned gain parameter for the cus-
tom drone. The control diagram and detailed information
of the controller are described at [8].
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Table 1.: Design Parameters for the EKF

variable value variable value
EK3_POSNE_M_NSE 0.5 EK3_ALT_M_NSE 2
EK3_VELNE_M_NSE 0.5 EK3_VELD_M_NSE 0.3
EK3_RNG_M_NSE 0.5 EK3_.YAW_M_MSE 0.5
VISO_POS_M_NSE 0.1 VISO_YAW_M_NSE  0.087266
EK3_GYRO_P.NSE 0.015 EK3_ACC_P.NSE 0.003

EK3_GBAIS_P_NSE 0.001 EK3_ABIAS_P_NSE 0.003
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Fig. 3.: Visual Representation of Loop Closing Process

3.SLAM

3.1 Loop Closing

In our approach, we employed RTAB-Map (Real-Time
Appearance-Based Mapping), a graph-based SLAM
technique, to perform loop closure and global mapping
[9].

RTAB-Map takes an estimated vision-based position,
obtained without loop closure, as its input. We used the
vision position provided by the ZED-mini camera. How-
ever, this vision-based position alone is insufficient for
performing global 3D mapping and loop closure. This
is where global SLAM, such as RTAB-Map, comes into
play. RTAB-Map is a classic GraphSLAM method de-
signed to accomplish global mapping and detect previ-
ously visited locations. GraphSLAM tackles the graph
optimization problem by consolidating information and
providing the best possible estimate, considering all the
collected data. This approach enables the creation of a
more accurate map compared to maps generated using
other methods, such as EKFSLAM [10].

The process involves graph optimization, which aims
to minimize the discrepancy between the estimated loca-
tion and the location observed by the sensors. The result
of this optimization is conveyed as a ROS TF (Transfor-
mation), which contains information about the transfor-
mation from the drone’s starting point to its current posi-
tion. Figure 3 provides a simplified schematic illustrating
the process, detailing how visual odometry data from the
ZED camera undergoes the SLAM process and is output
as a TF measurement used for EKF estimation.

The remainder of this section is about how this optimiza-
tion works for vision position updates.

3.2 Graph Optimization

The concept briefly outlined in this section is closely
aligned with the approaches described in [11]. Let e;;
represent a function that computes the discrepancy be-
tween the expected observation z;; and the actual obser-
vation z;;.:

Cij = Zij — Zij

Here, 2 represents a measurement of the state vector x,

while 2 represents predicted measurements based on the
state vector.

Algorithm 1 Algorithm for Graph Optimization Esti-
mated Pose Update

OPTIMIZE(X) :
while(!converged)
(H,b) = buildLinearSystem (x)
Ax = solveSparse(HAx = —b)

x =x+ Ax
end
return x
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Fig. 4.: Diagram Illustrating the Overall System

The state that minimizes e;; can be determined by
solving the problem of minimizing squared error:

¥ = argmin, Z e,L-Tj (@i, ) Qijei;(xi, ;)
2
Where 2 refers to the information matrix, which is the
inverse of the covariance matrix of the measurements.
It has been established that the graph optimization
problem described above, when linearized, is equivalent
to minimizing the squared error function [11].

F(z 4 Az) = c+ 20" Az + AxT HAx

Where, Where, ¢ = >, €] Qijeij, b =3, €] Qi Ji;
and H = 3. J5%;Ji;. In this context, J;; represents
the Jacobian matrix of e;;(x) computed with respect to
the state vector .

The quadratic form can be minimized with respect to
Ax by solving the linear system HAz* = —b. When
we determine the matrices [ and b, it’s important to note
that while b may lose sparsity, H retains its sparsity. This
sparsity property of H enables the efficient solution of
the linear system. Algorithm 1 outlines the process for
updating the estimated pose using the matrices H and b.

4. EXPERIMENT
4.1 Experimental Setup

In real-world experiments, we have successfully de-
veloped a system enabling autonomous drone operations
within GPS-denied indoor environments. Our drone setup
incorporates key components including the Pixhawk Or-
ange, Jetson Nano, and the ZED camera. A visual de-
piction of the drone’s physical configuration is presented
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Fig. 5.: Drone Side View Perspective

in Fig. 5. To establish seamless communication and con-
figuration, multiple communication channels have been
integrated. The holistic communication process is illus-
trated in Fig. 4.

The ZED camera is connected to the Jetson Nano to
stream video to the ground control computer through the
network. We used 100 Mbps Wi-Fi for transferring ROS
topics and streaming video over machines. The video had
a resolution of 2560x720 and 15 fps. When streaming
video, hardware acceleration is used in Jetson Nano to
perform real-time encoding and decoding with minimal
overhead. The streaming module uses the RTP protocol
to send and receive the video feed [12].

The Jetson Nano communicates to the Pixhawk using
the telem2 port of the Pixhawk which uses UART inter-
face protocol to transfer log data [13]. The ground control
computer communicates with the Jetson Nano using ROS
[14].

The ZED node passes the VO topic to the RTAB-Map
running on the ground control computer [15]. RTAB-Map
uses this VO topic to generate the global map and update
the pose. The updated pose was then published as ROS
TF and is used for the Ardupilot as a visual measurement
for pose estimation.

Using the estimated pose, position control is per-
formed to determine guidance commands at the ground
control PC. The Position control later uses local pose in-
formation of an object to determine guidance command
which will be dealt with in the second part of the series.
The guidance command is delivered to the MAVROS
node and on-board control is performed accordingly.

The drone’s flight time is around 15 to 20min with a
fully charged battery with this setup.

4.2 Sensor Fusion Results

Exploring SLAM’s role as EKF measurements:
SLAM processes vision and camera data for location
and mapping. ZED camera provides vision, but revis-
its need 3D mapping and loop closure [16]. RTAB-Map
gives compensated position shared via TFE, with a 3D
global map. TF is VO for EKE. SLAM’s TF is map-based,
EKF’s data is NED. Merging demands crucial coordi-
nate transformation due to navigation’s lack of Earth sen-
sors. SLAM and map framing align naturally [17]. Un-
fortunately, assessing accuracy needs costly equipment.

Fig. 6.: View of the Actual Experiment Place and the Map
Generated by SLAM

4 T T T T T
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Fig. 7.: TE, Visual Odometry (VO), and EKF Position
Comparison

So, achieving precise output remains tough. Contrast-
ing SLAM’s loop closure with VO’s drift drawback is
achieved by comparing their performance along a known
track.

Fig. 6 visually presents both the experimental environ-
ment and the map generated by the SLAM process. In this
experiment, we manually moved the drone along a pre-
determined path to acquire comprehensive data for map
creation. The trajectory of the drone is depicted on the
map with aqua-colored dots and lines. Despite the appar-
ent scarcity of distinctive feature points in the experiment
location, the SLAM-generated map is effectively visual-
ized using RVIZ, effectively capturing the environment’s
characteristics.

Fig. 7 graphically displays the TF produced by SLAM,
the camera’s vision-based position, and the ultimate fused
position obtained by EKF, utilizing TF as a measurement
input. The visual representation of the vision position ex-
hibits drift, due to the accumulation of errors that tend to
manifest in positioning systems without the presence of
coordinate-based measurements.

Conversely, the output derived from SLAM, specifi-
cally the TF, illustrates a loop-closing effect, effectively
correcting the drone’s current position within the map by
recognizing previously visited locations. This advanta-
geous loop-closing effect is equally evident in the output
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Table 2.: Details of the Drone Hardware Configuration

Type Amount Name Size Weight
Power 1 DII F450 FRAME KIT + Landing gear - 518
Propeller 4 Self-Lock Propeller (Universal Type) @ = 249mm 13
Battery 1 PT-B5200N-UKP55 44 x 153 x 25.5 385
Motor 4 2312E 960K V(CW/CCW) 90 x 70 x 30 69.5
Electronic Speed Controller 4 DIJI E305 430 Lite 54x24x9 27
Flight Controller 1 Pixhawk Orange 94.5 x 44.3 x 22.3 35
Stereo Camera 1 ZED 124.5 x 30.5 x 26.5 63
Processor 1 Jetson Nano 91.3 x 118.7 x 35.8 348
obtained through EKE.

On a different note, the advantage of synergizing
SLAM and EKF becomes conspicuous when steering
the drone with rapid movements. VO operates relatively
slowly but exhibits minimal drift, whereas the IMU, op-
erating at a higher frequency, contains more substantial
drift. When integrated, these two sources of data can
swiftly provide the necessary information to control the
drone effectively.

4.3 Drone Tracking with Fusion Data

Implementing vision-based techniques on drones
poses more challenges compared to ground robots, par-
ticularly when it comes to extracting navigation informa-
tion from VO. The integration of VO with an IMU is a
common practice due to the imperative need for frequent
navigation data to sustain control loops. Any inaccura-
cies present in this data can exert a substantial impact on
drone behavior, particularly during aerial operations [18].

Additionally, instances may arise where external
forces cause the drone to undergo abrupt motions that
surpass the frame capture rate of the camera. This can
lead to a degradation in the performance of capturing fea-
ture points, hampering accurate tracking. Consequently,
it becomes crucial to stabilize the drone’s motion and en-
sure suitable speed to enable the proper functioning of the
vision-based technique.

To evaluate the effectiveness of the EKF in conjunc-
tion with SLAM for drone navigation, an experiment was
conducted. The experimental setup was structured as out-
lined below:

The map frame was established with its origin coin-
ciding with the initial position of the drone. The x-axis of
the map frame was aligned with the drone’s initial head-
ing direction, while the y-axis was positioned 90° to the
right of the x-axis.

Using this map frame origin as reference, the vertex of
a square was defined, determining the drone’s position,
and the corresponding heading angle was designated as a
waypoint. These waypoints were sequentially assigned to
the drone in a counterclockwise direction. Upon reaching
each waypoint, the drone adjusted its heading angle by
90° to align its body frame’s x-axis with the subsequent
waypoint.

Once the drone approached a waypoint within speci-
fied distance and angle thresholds, which were set at 0.2m
and 10° respectively, the next waypoint was dispatched.

(XN o

Fig. 8.: Drone Position During Tracking of Square Way-
points

Fig. 9.: 3D Map Generation During Waypoint Tracking

This process was repeated for a total of 9 waypoints.

Fig. 8 visually presents the waypoints as defined by
the experimental scenario, alongside the drone’s posi-
tion. The figure effectively demonstrates the drone’s sta-
ble movement as it successfully tracks the assigned way-
points. The apparent arc in the trajectory, rather than
a straight line, results from the process of transitioning
to the next waypoint. This transition occurs before the
drone’s heading angle reaches a steady state, thus retain-
ing the influence of the transient response during head-
ing adjustments while moving towards the next waypoint.
The map generated by SLAM while the drone diligently
follows the waypoints is illustrated in Fig. 9, which rep-
resents that the integration of EKF with SLAM remains
effective even when the drone is autonomously navigat-
ing and fulfilling missions.
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5. CONCLUSION

This paper explores the development of an indoor
drone flight control system. With the drone market ex-
panding rapidly, the need for reliable drone operation in
GPS-deprived environments grows. The research com-
bines IMU-based EKF to achieve stable drone position
and attitude information.

The study underlines the importance of autonomous
flight technology in a thriving drone market. Challenges
arise indoors due to obstacles and unreliable GPS signals.
To address this, the research integrates VPS technology
and vision sensors, ensuring stable drone flight even in
GPS-denied areas.

The paper discusses EKF intricacies and its relevance
in drone navigation. It also highlights SLAM’s role in
boosting drone navigation in indoor settings.

The experimental setup employs Pixhawk Orange, Jet-
son Nano, and the ZED-Mini camera, showcasing prac-
tical implementation. Results indicate promising real-
world potential, particularly in challenging navigation
scenarios.

In summary, this research offers insights into drone
technology’s future. Integration of advanced methods and
sensors enhances drone navigation in demanding envi-
ronments.
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