Authorggzﬁi-sg-%3 e1I

2023 The 23rd International Conference on Control, Automation and Systems (ICCAS 2023)

Yeosu Venezia Hotel & Utop Marina Hotel, Yeosu, Korea, Oct. 17~20, 2023

Indoor Pedestrian-Following System by a Drone with Edge Computing and Neural Networks:
Part 2 - Development of Tracking System and Monocular Depth Estimation

Jung-I1 Ham', In-Chan Ryu?, Jun-Oh Park?, Jae-Woo Joeng?, Sung-Chang Kim?®, Hyo-Sung Ahn%?

1,2:3:4,6School of Mechanical Engineering, Gwangju Institute of Science and Technology,
Gwangju, 61005, Korea
(*jungilham @gm.gist.ac kr, 2inchanryu @ gm.gist.ac.kr, *junoingist@gm.gist.ac kr, *ju.jeong @ gm.gist.ac.kr)
(5 Thyosung @gist.ac.kr)
SEdge Computing Application Service Research Section, Electronics and Telecommunications Research Institute
Gwangju, 61011, Korea
(°sungchang @etri.re kr)

Abstract: This paper is the second installment in a series on indoor drone pedestrian tracking utilizing edge computing
and neural networks. Building upon the SLAM and EKF technologies introduced in Part 1, this paper introduces Monoc-
ular Depth Estimation to reduce camera costs and overall weight. The system leverages Al-driven depth information for
indoor positioning and real-time human tracking. Experiments demonstrate the drone’s ability to autonomously track a
specific individual indoors using vision and IMU sensors. Key contributions encompass an Al-based tracking system
employing YOLO v3 and a novel depth estimation approach that supersedes traditional depth cameras.
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1. INTRODUCTION

This paper is the second part of a two-part series in-
vestigating the development of indoor drone pedestrian
following systems with edge computing and neural net-
works. The first part of this series introduced the flight
control system, emphasizing the role of SLAM as a vi-
sual measurement, which is crucial for indoor drone nav-
igation [1].

In this second part of the series, we utilize the system
developed in Part 1 to address the issues of human detec-
tion and tracking, and furthermore, we have developed
Al-based Monocular Depth Estimation technology.

In order to track a specific person for indoor position-
ing and mission performance through 3D vision, research
on 3D mapping technology for autonomous flight of in-
door unmanned vehicles, research on stable navigation of
VPS-based unmanned vehicles, and research on Al-based
user recognition and tracking technology are required. [2]

In this paper, we introduce a drone system that uses
vision information in an indoor environment to posi-
tion itself, detect, and track people in real-time based
on Al The ground control center converts the received
information into bounding box information of a person
trained with YOLO v3, localization information through
SLAM, and location information of a person in a monoc-
ular camera through depth estimation. To verify that the
system works well, an experiment was conducted to au-
tonomously fly a drone to track a person using vision in-
formation and an IMU sensor without using GPS indoors.
The results show that a drone that recognizes a specific
person tracks it while maintaining a stable distance from
the person. The contribution of this paper can be summa-
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rized as follows:

1. Developed a complex Al-based human follow-
ing system and algorithm combining real-time onboard
YOLO v3 and depth estimation.

2. In order to replace the depth camera, which is
heavy to load on a drone, Al-based depth estimation, was
used to replace the depth value of SLAM information
with a mono camera.

This article is structured as follows. Section 2 de-
scribes YOLO and monocular depth estimation along
with a simple tracking controller based on measured data.
Section 3 presents the experiment, and Section 4 provides
a comprehensive conclusion.

2. PEDESTRIAN TRACKING

2.1 Pedestrian Detection

To develop autonomous drone tracking of pedestrians,
we employed the YOLO v3 algorithm [3]. This algorithm
is tailored to recognize specific pedestrians by training
on their data. YOLO uses bounding boxes to probabilis-
tically predict object type and location within trained im-
ages.

In our experiment, we considered only bounding boxes
with a recognition rate of 95% or higher as humans. Us-
ing a dataset of 1500 images, we extracted 300 man-
nequin models from five locations. The model was con-
figured with one class, 18 filters, a learning rate of 0.001,
and 30,000 training iterations. We saved the weight file
just before loss rate escalation. A ROS node enabled
weight usage in our drone’s software-in-the-loop (SITL)
simulation.

Upon drone camera capture of a stationary or mov-
ing mannequin, a stable recognition signal was sent to
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Fig. 1.: Overview of Our Network Structure

the ground control PC. Bounding box size exhibited less
than 5% error from actual size, demonstrating reliability.
Applying findings to indoor drone flight, we utilized the
darknet ROS package. Rqt graph analysis confirmed suc-
cessful transmission of YOLO v3 frames from the drone
to the ground control PC, achieving frame rates of 75 to
100 fps.

2.2 Monocualr Depth Estimation

Usually, the stereo camera is mainly used for auto-
mated drone navigation. However, if one of the stereo
cameras is broken or is covered by dust or an obstacle,
the whole system is not going to work.

Also, in the case of extremely small drones, the stereo
camera is not suitable because of its size and weight. To
solve this problem, we used the monocular camera for
depth estimation with the edge computing method.

Monocular depth estimation developed rapidly with
the growth of deep learning methods. In vision-based
control, depth is an important issue, and it can be used
in various problems such as SLAM(Simultaneous Local-
ization And Mapping), Visual Odometry, and obstacle
avoidance.

However, the network size of monocular depth estima-
tion is too large to be used in embedded systems. There-
fore, we chose to use the edge computing method. The
image information receives the real-time image from the
drone and computes the network to generate the depth im-
age at the ground PC. Then, only the control information
is sent to the drone.

As the Figl The network has 4 Encoder blocks and 3
skip connections, ASPP(Atrous Spatial Pyramid Pooling)
[4] module right after the encoder and 3 decoder blocks
merges multi-scale features.

Recently, many models using Transformer have been
used in the image segmentation field. In the monocular
depth estimation, there are also attempts to use this. We
implemented the encoder using SegFormer [5], which
was used in GLPdepth [6]. SegFormer is a model that
achieved SOTA in the image segmentation field by using
Transformer and is able to encode images of any size us-
ing overlapping. Since the encoder can generate various
size features, it has the advantage of being able to ex-
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Fig. 2.: Structure of the DecoderBlock

tract good performance with a simple decoder. We used
the MiT B4 pre-trained with Image-net network for our
encoder, introduced in SegFormer [5].

The decoder consists of channel reduction, De-
coderBlock, ConvBlock, and Sigmoid. The back born
structure of Decoder is using GLPdepth [6], we used the
module by replacing the BatchNorm-ReLU block with
the SimpleGate block. The SimpleGate [7] is based on
element-wise multiplication. So batch normalization is
unnecessary for the decoder when using SimpleGate as
an activation function.

We used the scale-invariant loss [8] as the training loss.
The scale-invariant loss is as follows.

L:%;df—%@d% ()

d; = logy; — logy; 2

The y; means the predicted depth map, and the y;
means the ground truth with n pixels indexed by i.

To train and evaluate our algorithms with the NYU
Depth V2 dataset [9], which contains 640 x 480 indoor
environment images and depth maps of indoor environ-
ments. We used pre-defined centre cropping by Eigen [8],
which includes around 24K pictures and its depth image
for evaluating our result.

We used the AdamW as an optimizer. The model was
trained for 50 epochs with a batch size of 10. The training
GPU was Nvidia RTX 3090. We used the PyTorch [10]
framework for our implementation.

The RMSE(Root Mean Square Error) has improved by
almost 1.1%. Other values were also slightly improved in
performance.

The table 1 is the accuracy compared with other meth-
ods. The result shows that the root means square er-
ror(RMSE) is 1.1% better than the GLPdepth method.
Also, absolute relative error(abs rel), logl0 error, § <
0.25 got better performance and 62 < 0.25, §% < 0.25
was same.

2.3 Monocular Depth Estimation Refinement

In this section, we will talk about the estimation qual-
ity of the monocular depth estimation in a new environ-
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Table 1.: Monocular depth estimation performance in NYU Depth V2 dataset.

Models Parms(M) RMSE absrel logl0 6 <0.25 42<025 4°<0.25

Adabins [11] 78 0.364 0.103  0.044 0.903 0.984 0.997

BTS [12] 47 0.392 0.110 0.047 0.885 0.978 0.995
GLPdepth 62 0.344 0.098  0.042 0915 0.988 0.997

Ours 67 0.340 0.095 0.040 0.917 0.988 0.997
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S 5 To maintain a certain distance from the pedestrian, we

Fig. 3.: Images Depicting Monocular Depth Estimation
Results

Fig. 4.: Distance Measurement Method

ment.

Scale is a big trouble in monocular depth estimation
because there is no way to get accurate depth information
in a single image. So, supervised monocular depth esti-
mation in the new environment cannot guarantee accu-
racy compared with ground truth. There are several rea-
sons why the supervised depth estimation cannot guaran-
tee its accuracy, such as brightness, distortion, and angle
of View.

The monocular depth estimation results from an in-
door experiment show the orderly output in each environ-
ment, which means that if we offer the new environment,
it shows the ordered information on which object is far or
close.

With the assumption that information is ordered, lin-
ear correction can be applied. The modification consists
of mainly two man-tuned parameters, which ¢, correct
offset and c, are suggested.

Dc:co—l—cs*f) 3)

With raw information of monocular depth estimation
D we get the D.. By employing linear regression on the
aforementioned model output and distance that is physi-
cally measured within the experimental environment, the
values of ¢, and c, are found to be 1.29 and -0.89, respec-
tively.

made a ROS topic that measures the distance between the
pedestrian and the drone using monocular depth estima-
tion. The detection of the pedestrian by YOLO V3 and
measuring the position of the bounding box of the pedes-
trian. Then, we estimate the average depth information of
the 17 points around the location in the depth map using
monocular depth estimation to measure the distance. The
distance information estimated by monocular depth esti-
mation is the distance in the direction of the camera’s line
of sight. Therefore, to measure the distance between the
pedestrian and the drone Dxy from the estimated dis-
tance D, we need to multiply the simple trigonometric
transformation shown in Fig. 4.

Dxy = D x cos(h) “4)

The angle 6 is the angle between the line of sight of
the camera and the horizontal line. The rise 6 is the pitch
and offset angles summation.

The relative angle between the drone and the target can
be calculated from the bounding box pixel and camera
parameters.

Uy = atan2(W/2 — xopj, ly)

The midpoint of the camera frame on the x-coordinate
side is denoted as WW/2. Similarly, the midpoint of the
bounding box on the x-coordinate side is represented as
Zobj, While the camera’s focal length is designated as [ .
Considering the intrinsic parameters of the camera and
the camera frame size, the values of [y and W /2 are cal-
culated to be 700.819 and 320, respectively.

2.5 Tracking Control

This section proposes a controller that tracks detected
pedestrians using both distance and pixel measurements
obtained from a deep learning technique. If the con-
troller’s goal is only to maintain a specific distance be-
tween the drone and the detected pedestrian, an equilib-
rium set is established in the form of a circle centered
around the pedestrian.

In scenarios where external forces are exerted on
the drone, particularly phenomena like the ground ef-
fect—where propeller-generated wind is reflected off the
floor and affects the drone -the controller and the drone
moves around the circle which is the equilibrium set of
controller, which is undesirable. Thus, having a controller
with a unique equilibrium point within the map frame is
highly desirable.

Fig. 5 illustrates the map frame denoted as X,,, Yy,
showing the drone’s position pg = [z4, 4], its heading
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Fig. 5.: Map Coordinates and Relative Geometry of
Drone and Pedestrian

angle 1,4, the target position p; = [z, v]7, the relative
angle between the drone and the target v/, and the rela-
tive distance between the drone and the target Dxy-.

Assume the desired distance between the drone and
the target is Dy..ireq, and the intended offset iS 04c.ireq-
The positional error between the drone and the target is
defined as p. = pg — p;. The controller design aims to
achieve lim;_, .. ¥, = 0 and lim;_, .. P. = Odecsired-

The target position in the map frame is unknown, but
it can be expressed as follows: p; = pa+ Dx v [cos(ia+
Yy), sin(a + v,)]7. Consequently, p. = pa — pr =
Dxylcos(g + 1y, sin(vg + ¢,)]7.

In this paper, We propose a simple P-type controller.

. = rl.bd = K‘{, !pr
Pc=Dpd+ Kp Pe — Odesired

p. and 7, are drone position control commands and head-
ing angle control commands respectively.

3. EXPERIMENT

3.1 Experimental Setup

The primary objective of the experiment is to maintain
a predetermined distance between a pedestrian (simulated
by a dummy) and a drone. In order to track the pedestrian,
a straightforward algorithm has been devised.

The algorithm operates in two distinct modes. The ini-
tial mode activates when the pedestrian is not detected.
In this mode, the drone initiates a 45° rotation to scan
the surroundings. The subsequent mode engages when
the drone detects the pedestrian. During this phase, the
drone’s Yaw angle is adjusted to align with the pedes-
trian’s center, utilizing straightforward K, control with
a gain of 1. Additionally, the drone’s position is adjusted
using K, control based on the difference between the de-
sired distance and the current distance, employing a gain
of 1.

To ensure precise mode changes only when the pedes-
trian detection or loss is certain, the "Detect/Not detect
count” is established and updated within the control loop.
Mode shifts are executed exclusively when the “Detect
count” surpasses a predefined threshold. Specifically, as
YOLO may not provide continuous detection even dur-
ing the "Detected” mode, an increase in the "Not detect
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Fig. 6.: Diagram Ilustrating the Overall System

X digcion

Fig. 7.: Flight Results for Drone-Pedestrian Distance
Control

count” might inadvertently trigger a mode shift, leading
to a 45° drone rotation. Consequently, to counteract this,
an "Not detect count™ reset is necessary whenever the
“Detect count” increases by even a single instance.

We incorporated our newly developed monocular
depth estimation technology and YOLO into the system
introduced in Part 1. This integration has led to an up-
dated system architecture, as illustrated in Fig. 6. The
depth and coordinate information from the pedestrian’s
bounding box, extracted using YOLO and the depth esti-
mator, play a pivotal role in the ground control PC’s posi-
tion control. Further details regarding the algorithms for
the position controller are provided in the subsequent sec-
tions. To gain a visual understanding of the architecture
constructed through ROS nodes and topics, we encour-
age you to view the demonstration video available at the
following link: https://fyoutu.be/hDO40Rkx9R4.

3.2 Indoor Flight Experiment

For the experiment, we positioned the drone and the
dummy diagonally across an empty room. We conducted
the flight experiment with the drone initially unable to
see the pedestrian. The initial separation between the
pedestrian and the drone was approximately 2.5 me-
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Fig. 8.: Comparison of Depth Information from ZED and
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Fig. 9.: Difference in Pedestrian Depth Between ZED and
Moenocular Depth Estimation

ters both horizontally and vertically. The control param-
eters were set as follows: Dgesired = 2 and 0gesired =
[Ddesiw'ed: Ddesired]T-

In Fig. 7, you can observe the drone’s movement (in
blue), position command (in red), and the pedestrian’s
relative position (in yellow) to the drone’s initial position
in the x and y directions. The drone begins flying and then
adjusts its heading angle by 45° to track the pedestrian.
It flies towards the pedestrian for about 4 seconds. After-
ward, the drone maintains a distance of 1.75 meters in the
x-direction and 1 meter in the y-direction from the pedes-
trian, which results in an overall distance of 2 meters di-
agonally. To sustain this distance between the pedestrian
and the drone, the center of the pedestrian is tracked, and
the distance between the center of the pedestrian and the
drone is used to control the drone’s yaw.

In our approach, we determined the distance between
the pedestrian and the drone by calculating the average
distance from 17 points, centered around the bounding
box obtained from the depth map. Given that the ZED
camera has a depth accuracy of 1% [13] within the near
range, we used the ZED camera as the ground truth for
determining the accuracy of distance measurements. Fig.
8 displays the depth information from the ZED camera
(blue) and the monocular camera (red). It’s evident that
the trend of the two depth information sources is nearly
identical. Therefore, we have confirmed that the distance
measurement method using a single camera can effec-
tively replace the depth information obtained from the
ZED camera.

Fig. 9 illustrates the difference in measured values be-
tween the ZED camera and our monocular depth estima-
tion. It’s worth noting that the error observed within the
initial 7 seconds signifies that pedestrian detection has not
yet taken place. The average absolute error was found to

Fig. 10.: Results of the Flight Experiment
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Fig. 11.: Flight Results for Drone-Pedestrian Distance
Control During Pedestrian Movement

be 0.214, and the root mean square error (RMSE) was
calculated to be 0.122.

As depicted in Fig. 10, the drone successfully con-
verges to a distance of 2 meters. However, there is a
slight oscillation. Given that the custom drone used in
the experiment is relatively large for the environment, it’s
highly likely that significant ground effects were at play,
exerting external forces on the system. When an unmod-
eled external force continuously affects the system, it is
expected that the controller may not converge but instead
maintains the drone around an equilibrium point. There-
fore, it can be concluded that the drone’s flight was con-
ducted successfully even in challenging conditions where
such external forces were in play.

We have successfully conducted tracking experiments
not only when the pedestrian is stationary but also when
it is in motion. Fig. 11 depicts the actual movement of
the drone. This time, the pedestrian moved a distance of
2.5 meters in the y-direction. To demonstrate the tracking
performance clearly, we set 04.ircq @ [0, Dgcsired)” SO
that the drone follows the pedestrian in parallel in the y
direction. Upon observing the drone’s movement (blue),
we can see that after initiating the flight, the drone detects
the pedestrian, moves to a position 2 meters away from
the pedestrian in the x-direction, and as the pedestrian
moves, the drone adjusts its position in the y-direction to
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maintain a 2-meter distance. While there is some over-
shooting in both the x and y directions, this behavior can
be attributed to the drone operating close to its maximum
payload capacity. It’s crucial to emphasize that the algo-
rithm effectively generated the waypoint commands, and
the drone’s position control accurately followed the in-
tended scenario. For a visual demonstration of this ex-
periment, please refer to the following YouTube link:
https://youtube.com/shorts/5Y qxjTELpD8?feature=s
hare.

4. CONCLUSION

This research presents the second part of a two-
part series on an indoor drone system for pedestrian
tracking, which utilizes edge computing and neural net-
works. Building on the previous installment that dis-
cussed SLAM and EKF integration for indoor drone
flight, this paper focuses on using the developed sys-
tem to address human detection and tracking challenges.
Notably, it introduces Monocular Depth Estimation as a
cost-effective alternative to traditional cameras.

The paper introduces an indoor drone system that
utilizes Al for real-time human detection and tracking
through vision data. This system processes data to gener-
ate pedestrian bounding boxes, SLAM-based localization
details, and monocular camera-based pedestrian location
data. Experimental results showcase the drone’s ability to
autonomously track pedestrians without GPS, maintain-
ing a consistent distance from a specific individual.

In summary, this paper offers valuable insights into
the development and application of an indoor drone sys-
tem for pedestrian tracking, emphasizing the integra-
tion of edge computing, neural networks, and monocu-
lar depth estimation. The findings and developments pre-
sented have the potential to revolutionize indoor drone
navigation and tracking systems.
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